Assembly of functional ALT-associated promyelocytic leukemia bodies requires Nijmegen Breakage Syndrome 1.
نویسندگان
چکیده
Immortalized cells maintain telomere length through either a telomerase-dependent process or a telomerase-independent pathway termed alternative lengthening of telomeres (ALT). Homologous recombination is implicated in the ALT pathway in both yeast and human ALT cells. In ALT cells, two types of DNA double-strand break repair and homologous recombination factors, the Rad50/Mre11/NBS1 complex and Rad51/Rad52 along with replication factors (RPA) and telomere binding proteins (TRF1 and TRF2), are associated with the ALT-associated PML body (APB). DNA synthesis in late S-G(2) is associated with APBs, which contain telomeric DNA and, are therefore, potential sites for telomere length maintenance. Here, we show that the breast cancer susceptibility gene product, breast cancer susceptibility gene 1, and the human homologue of yeast Rap1, hRap1, are also associated with APBs specifically during late S-G(2) phase of the cell cycle. We additionally show that the localization of the double-strand break repair factors with APBs is distinct from their association with ionizing radiation-induced nuclear foci. To systematically explore the mechanism involved in the assembly of APBs, we examine the role of Nijmegen breakage syndrome 1 (NBS1) and TRF1 in this process, respectively. We demonstrated that NBS1 plays a key role in the assembly and/or recruitment of Rad50, Mre11, and breast cancer susceptibility gene 1, but not Rad51 or TRF1, to APBs. The NH(2) terminus of NBS1, specifically the BRCA1 COOH-terminal domain, is required for this activity. Although TRF1 interacts with NBS1 directly, it is dispensable for the association of either Rad50/Mre11/NBS1 or Rad51 with APBs. Perturbation of the interactions between NBS1/Mre11 and APBs correlates with reduced BrdUrd incorporation associated with APBs, consistent with decreased DNA synthesis at these sites. Taken together, these results support a model in which NBS1 has a vital role in the assembly of APBs, which function to maintain telomeres in human ALT cells.
منابع مشابه
Acute promyelocytic leukemia, hypogranular variant: a rare presentation
Early diagnosis of acute promyelocytic leukemia (APL) is essential because of its associated life threatening coagulopathy and unique response to all trans-retinoic acid (ATRA) therapy. The characteristic cell morphology supplemented by cytochemistry offers the most rapid means for diagnosis. Here we describe a rare case of acute promyelocytic leukemia-hypogranular variant that poses particular...
متن کاملPML body meets telomere
The unlimited proliferation potential of cancer cells requires the maintenance of their telomeres. This is frequently accomplished by reactivation of telomerase. However, in a significant fraction of tumors an alternative lengthening of telomeres (ALT) mechanism is active. The molecular mechanism of the ALT pathway remains elusive. In particular, the role of characteristic complexes of promyelo...
متن کاملThe eIF4E RNA regulon promotes the Akt signaling pathway
Eukaryotic initiation factor 4E (eIF4E) promotes cellular proliferation and can rescue cells from apoptotic stimuli such as serum starvation. However, the mechanisms underlying apoptotic rescue are not well understood. In this study, we demonstrate that eIF4E overexpression leads to enhanced survival signaling through Akt and that eIF4E requires Akt1 to rescue serum-deprived fibroblasts. Furthe...
متن کاملThe role of recombination in telomere length maintenance.
Human telomeres shorten during each cell division, predominantly because of incomplete DNA replication. This eventually results in short uncapped telomeres that elicit a DNA-damage response, leading to cellular senescence. However, evasion of senescence results in continued cell division and telomere erosion ultimately results in genome instability. In the long term, this genome instability is ...
متن کاملTelomerase-independent telomere length maintenance in the absence of alternative lengthening of telomeres-associated promyelocytic leukemia bodies.
Immortal tumor cells and cell lines employ a telomere maintenance mechanism that allows them to escape the normal limits on proliferative potential. In the absence of telomerase, telomere length may be maintained by an alternative lengthening of telomeres (ALT) mechanism. All human ALT cell lines described thus far have nuclear domains of unknown function, termed ALT-associated promyelocytic le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 63 10 شماره
صفحات -
تاریخ انتشار 2003